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Micron-scale robots require systems that can morph into arbi-
trary target configurations controlled by external agents such as
heat, light, electricity, and chemical environment. Achieving this
behavior using conventional approaches is challenging because
the available materials at these scales are not programmable like
their macroscopic counterparts. To overcome this challenge, we
propose a design strategy to make a robotic machine that is
both programmable and compatible with colloidal-scale physics.
Our strategy uses motors in the form of active colloidal parti-
cles that constantly propel forward. We sequence these motors
end-to-end in a closed chain forming a two-dimensional loop
that folds under its mechanical constraints. We encode the target
loop shape and its motion by regulating six design parame-
ters, each scale-invariant and achievable at the colloidal scale.
We demonstrate the plausibility of our design strategy using
centimeter-scale robots called kilobots. We use Brownian dynam-
ics simulation to explore the large design space beyond that
possible with kilobots, and present an analytical theory to aid
the design process. Multiple loops can also be fused together to
achieve several complex shapes and robotic behaviors, demon-
strated by folding a letter shape “M,” a dynamic gripper, and
a dynamic pacman. The material-agnostic, scale-free, and pro-
grammable nature of our design enables building a variety of
reconfigurable and autonomous robots at both colloidal scales
and macroscales.

active particles | colloidal robotics | design | kilobots |
morphological control

Applications for autonomous robotic machines operating on
submicron scales are foreseen in healthcare (1), defense

(2), manufacturing (3), and programmable matter (4). A key
feature of such machines is their ability to morph into prepro-
grammed configurations in response to a stimulus. Two major
attributes of robotics on any length scale are actuation and
control. Conventional robotics uses electromechanical actuation
components; this is challenging at small scales, due to fabrication
limitations, presence of stochastic forces, material constraints, or
the need for biocompatibility (3, 5, 6). One approach to achiev-
ing actuation on microscopic scales is to exploit physicochemical
principles of colloidal science. In this approach, colloidal motors
on the order of hundreds of nanometers to several microns—also
known as active particles—convert energy in their environment,
such as light, chemical fuel, heat, sound, and electric and mag-
netic fields (7–12), into a propulsion force (5, 7–9). Active
particles can be made from a variety of materials, including
metals, polystyrene, silica, polymethyl methacrylate (PMMA),
polydimethylsiloxane (PDMS), and hydrogels (5, 7–9), and in
many different shapes, such as spheres (13), rods (8, 9), and gears
(10). Examples of active particles include molecular motors (14,
15), microorganisms (8), self-propelling (13) and self-rotating
colloids (10), and particles propelled via symmetry breaking (16,
17). Propulsion speeds ranging from microns to tens of millime-
ters per second have been demonstrated (8). Such diversity in
material, shape, motion, and method of actuation, combined
with the ability of colloidal particles to self-assemble, renders
active particles ideal motors for submicron applications.

Colloidal robotic machines aim to achieve some of the same
behaviors as conventional swarm robotics, but in a very dif-
ferent way. In swarm robotics, the distributed control logic of
robots (individual motors) is programmed via local interactions
between the motors. An excellent example is provided by kilo-
bots, fist-sized motors with their own control logic and memory
on board. Rubenstein et al. (18) proposed an algorithm that runs
on every kilobot, enabling them to self-organize as a swarm into
prescribed shapes. A critical feature of that approach is that each
kilobot knows the target shape and, through communication with
other kilobots, its location in the shape. Such knowledge would
be challenging to imprint on a colloidal particle, and, therefore,
active colloidal systems typically form emergent patterns rather
than finite shapes (9, 13, 19). Hence, we seek an approach to
make finite colloidal machines but with nonintelligent particles
that lack individual identity.

One such approach is morphological control, where the phys-
ical relation between different elements of a system control its
behavior. Hence, the information of the function is stored in
the design of the system’s structure. This presence of struc-
ture is absent in the swarm systems, which allows morphological
systems to encode relatively more information. For instance, pro-
teins, the workhorses of living organisms, are chains of amino
acids, which have 20 different varieties. Different amino acids
in a protein interact among themselves in a unique fashion due
to their particular sequence, thereby storing information about
their function in their sequence. Four-dimensional (4D) print-
ing is another rising field in this context, where structures are
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printed with different inks, each with a different response to,
for instance, temperature. The pattern of different inks decides
the system’s morphological response to the stimuli tempera-
ture (20). Li et al. (21) developed a system using macroscale
robots that actuate by swelling and contracting, which pushes
and pulls neighboring robots. The robots are programmed to
actuate out of phase with each other; this phase offset pro-
grams the dynamical behavior of the system. These particle
robots also require basic computation and clock synchroniza-
tion. While colloidal particles can be made to swell or contract
with an environmental change, such as a change in tempera-
ture or solvent pH, achieving programmable actuation with a
prescribed phase for each individual, essentially identical, par-
ticle is still not feasible. Instead, colloidal robotics must rely
upon identical interparticle interactions. This was demonstrated
recently by Slavkov et al. (22), who programmed interactions
between their robots via chemical signaling to achieve simple
shapes with appendages. Their system is robust, but the target
shapes lack the variety and precision we seek for submicron-
scale robotic applications. Another system of identical particles
is bristle bots (23). Bristle bots can move and spin and inter-
act through mechanical collisions to form dynamic phases. The
translation to spin ratio is varied to tune the dynamic behav-
ior. The natural limitation of using independent identical robots
without the onboard ability to carry and process information is
that they can only achieve a small number of static and dynamic
behaviors.

In the growing number of studies of macroscale or colloidal-
scale robots, the robots are free to move relative to one another,
other than a confining boundary so they do not fall off the
table or leave the simulation box. However, it is now possible
to link together colloidal particles with, for example, polymers
(24) or DNA oligonucleotides (25–27) of nearly arbitrary length
and stiffness. Motivated by these developments and the possi-
bility of particle chaining, here we present a design approach
(Fig. 1A), implementing morphological control, to program a sys-
tem of nonintelligent motors (i.e., lacking onboard logic) into
precise, preprogrammed behavior. We use motors that mimic
active particles through constant forward propulsion. The nov-
elty of our design is to connect the motors end-to-end in a
loop such that each robot’s propulsion force direction is always
tangential to the loop. Each connection between neighboring
motors is a hinge that allows relative rotation only in the plane
of the loop, constraining the possible behaviors to two dimen-
sions as in the examples above. The only intermotor interaction
beyond steric interactions is this mechanical constraint, and thus
programmability of the steady-state loop shape (and subsequent

behavior) is dictated by motor self-propulsion subject to these
constraints, and the sequencing of motors along the loop. These
motors do not employ any other form of communication and
computation of the kind used in systems of Rubenstein et al.
(18), Li et al. (21), and Slavkov et al. (22). Connecting colloids
into chains has been investigated before with a focus on the
filament dynamics, mechanical coupling, and relation to poly-
mer scaling theory (28–30). However, these are nonloop chains
with all particles similarly oriented along the chain, which is why
the information encoding is limited. Through our system, we
extend the focus of active colloidal chains toward robotics by
introducing a programmable architecture. An approach toward
programming chains is demonstrated by Spellings et al. (31),
where they link gear-shaped particles with rotational motion
in a loop. The loop also encapsulates passive particles. The
alternating sequence of clockwise and anticlockwise spinning
particles interacts with the passive interior to symmetrically
buckle the boundary. Our system uses particles with translational
motion to extend and develop the notion of programmability
for active loops. We perform experiments with several designs
using kilobots to establish proof of concept, and use Brown-
ian dynamics simulations to explore the rich design space and
demonstrate the scale invariance of our approach. We discuss
the morphing mechanism as a consequence of three driving
forces, which, in turn, are derived from the force interactions
in the loop, and we provide a design procedure to reverse-
engineer the loop design for a given target shape. Beyond simpler
behaviors, we demonstrate complex behavior using examples like
pacman (dynamic behavior) and the letter “M” (static behav-
ior) by decomposing the designed loop into simpler compo-
nents and then combining them. To quantify the mechanical
stability of the loop configuration, we present an analytical
solution of the loop dynamics (see Theory), which also allows
for quick estimation of forces and velocities on different loop
configurations.

Six design parameters govern the force interactions (illus-
trated in Fig. 1B) and allow programmability. These are 1) motor
orientations with respect to the loop, 2) relative strengths of
each motor’s propulsion force, 3) relative motor sizes, 4) the
strength of stochastic forces on the motors, 5) loop size, and 6)
internal pressure within the loop. The length and force quanti-
ties in the design parameters are nondimensionalized using the
motor length and the bond strength of the hinge, respectively,
which are both constant along the loop (see details in Simula-
tions). The system’s design can be scaled by defining the scale
of these parameters. This implies that, while scaling, the number
of motors in the loop, that is, the loop size and their sequence
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Fig. 1. System overview. (A) Constantly propelled motors are sequenced end-to-end in a loop using our design strategy to fold an arrowhead shape (Movie
S1). Each motor can be arranged to point its propulsion in one of the two directions with respect to the loop (shown using arrows and yellow/blue colors
for the simulation, and white arrows for the experiment). Design parameters for the shown loop are as follows: motor orientations as colored; propulsion
strength is identical on all motors; for simulation, motor widths are σ/2 except for the two larger motors with width 0.6 σ (analogous steric effect is
obtained between the corresponding kilobots by shaping popsicle stick ends [SI Appendix, Fig. S1], described in Materials and Methods); stochastic force
is low (T = 0 for simulation); loop size is 12 motors; and internal pressure is zero. (B) Design parameters of the loops. These determine the steady-state
behavior of the loop.
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of orientations, remains fixed. When it was not possible to use
the same number of motors, the same shape as in the simulation
was achieved in the experiments by reproducing a coarse-grained
version of the sequence with fewer motors. The exact force scal-
ing is difficult with kilobots because their propulsion calibration
is imprecise and limited. Hence, we implement the simplest form
of force distribution for the kilobot loops that correspond to their
colloidal counterparts (described in Kilobot Experiments). Our
scheme can achieve the complex emergent behavior schemat-
ically drawn in Fig. 1B. The external stimuli controlling these
design parameters can be used as both the power source and
the communication agent for controlling the loops. In this
way, multiple responses can be programmed using a single set
of design parameters to achieve either autonomous (environ-
ment response) or user-operated (external field response) smart
behavior.

Kilobot Experiments
We describe the basic design strategy by sequencing kilobots to
form the gripper robotic machine shown in Fig. 2. Each kilobot
is programmed to constantly propel forward to mimic a colloidal
motor. All kilobots possess similar propulsion strengths. A small
amount of stochastic force is introduced in the propulsion pro-
gram (see Materials and Methods). This stochasticity is very low,
and, hence, the kilobot loops fold as if in a nonthermal regime.
Loops are created by chaining kilobots together with popsicle
sticks. At the simplest level of design, there is one stick between
every two kilobots. Additionally, we can replace a kilobot with
a popsicle stick (see Experiment), so that each motor exists in
a ternary state—two states for orientation and a passive state
(when the kilobot is replaced by a stick)—and the combinatorial
permutations of active and passive kilobots provides programma-
bility. When two kilobots are linked facing in opposite directions
with a passive bot between them, their propulsion stretches them
into a straight chain (shown in Fig. 2A). This property is used to
form straight segments of a shape. Fig. 2B shows a triangle folded
using three such segments. Substituting a kilobot in one of the
segments (Fig. 2C) with a passive stick introduces a net force on
that segment to form a curved triangle with net rotation. To build
a gripper, two such triangle sequences are fused at a vertex as
shown in Fig. 2D. Gripping behavior can be achieved by switch-
ing between passive and active states of the two corresponding
motors. In Fig. 2E, we illustrate a noninvasive surgery cartoon as
a robotic application where the closed and open gripper states
are controlled by two different light sources. We demonstrate
operations like gripping and incising (Fig. 2E) using kilobots and
foam blocks (Movie S2).

In Fig. 3 (Movie S3), we show several folded shapes achieved
by using up to 12 kilobots. The arrowhead shape shown in Fig. 1B
(Movie S1) and Fig. 3C features a notch. Achieving this notch
under low stochasticity requires an additional design parameter,
local angle constraints. One way to achieve this is by replacing
some kilobots with larger motors, as shown in simulation snap-
shots (Figs. 1B and 3C), which increases the minimum angle
possible between neighboring bots without steric hindrance (the
role of this steric hindrance is discussed in Folding Mechanism).
Because all kilobots are the same size, we tune the minimum
angle between kilobots by shaping the ends of the popsicle sticks
connected to them (see Experiment and SI Appendix, Fig. S1).
The distorted folding of the arrowhead compared to its simulated
counterpart is due to the imprecise nature of the kilobots. These
demonstrations using kilobots—a relatively primitive ”active
particle”—demonstrate the plausibility of our design approach.

Active Particle Simulations
Extending the design space to all six parameters using simula-
tions achieves a wider variety of shapes and motions (Fig. 3 and
Movie S4). To demonstrate this, we use Brownian dynamics sim-

A

B

C

D

E Grip Tear

Fig. 2. Sequencing of kilobots. (A) Two kilobots with diverging propulsion
at their joint straighten. (B) Loop composed of three segments each with
the sequence shown in A folds into a triangle. (C) Replacing a kilobot of
the triangle in B with a stick (passive state) generates net force driving the
curving and rotation of the triangle. In A–C, Left and Right are the initial
and final configurations, respectively. (D) The gripper composite is formed
by connecting two of the loops in B and C. Switching between the active
and passive state of the two motors (green arrow) achieves the closed (Left)
and open (Right) states of the gripper. The arrows in A–D indicate the cor-
responding kilobot’s direction. (E) Experimental demonstration showing the
gripping and tearing operations on foam blocks (Movie S2).

ulations, a standard technique for studying active colloids that
mimics their stochastic Brownian motion in solvent (see Simula-
tion). The key morphological and dynamic features of the loop
shapes designed and demonstrated in simulation are 1) straight
and curved segments of variable length, 2) zigzag pattern, and
3) net translation or rotation. All of the shapes in Fig. 3 are sta-
ble under thermal (Brownian) forces. The target space of loop
morphologies and behaviors extends to more complex robotic
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Fig. 3. Example range of targets. Our design scheme achieves shapes that can be constructed as straight or moderately curved lines (segments) connected
at corners. (A–C) Simulation snapshots of example shapes in increasing complexity. The key morphological features of these shapes are straight segments,
curved segments, zigzag geometry, and net motion. The straight or curved arrows indicate the shape’s net translation or rotation if present. Dashed blue
line encloses simulation and experiment version of shapes. All shapes are stable at (T = 0.1), although shapes in A and those corresponding to experiments
do not require stochasticity to fold. The graded color opacity along some subsegments—sets of similarly colored consecutive motors—indicates linearly
increasing propulsion magnitude. (D) Composites are multiple loops fused together and can achieve more complex behavior such as the letter “M” (design
procedure is shown, simulation snapshot is shown at the bottom), and pacman. Simulation snapshots of the two states of pacman are achieved reversibly
by tuning the net propulsion strength of the two subsegments as shown. Harmonic spring is a chain of passive (white) motors bonded with harmonic
coefficient 0.002 k0. Reversible switching between the two states resembles the Pac-Man behavior. See SI Appendix, Figs. S2 and S3 for the complete design
parameters, and see Movies S3 and S4 for the movies.

behavior by fusing multiple loops together into composites. In
addition to the gripper example discussed above, Fig. 3 shows
two more examples. The first example is the morphing of the loop
into the letter “M” (Movie S5). The second example is a pacman
shape (Movie S6), which uses two loops similar to the gripper but
is more sophisticated. The closed state produces the net forward
motion of the loop. Switching repeatedly between small and large
propulsion strengths drives the system to reconfigure repeat-
edly between open and closed states while also propelling the
robot forward in a way that resembles the arcade game character
Pac-Man.

Design Procedure
The design procedure we employed to achieve the above results
comprises four distinct steps (illustrated in Fig. 4), which can be
used to generate any 2D shape.

In step 1, the target shape is simplified to a set of straight
or curved line segments connected end-to-end at corners. Each

line segment corresponds to a loop segment. The number of
loop segments is determined by the desired resolution of the
morphological features. We start from the minimum possible
number of motors to minimize the loop’s complexity. As a
heuristic, the shortest segment is set to contain two motors, and
then the sizes of other segments are relatively chosen to corre-
spond to the target shape. If required, the motors can be added
segment-wise as described in Varying Loop Size. While adding
more motors, the loop’s symmetry features are maintained. In
Fig. 4A, we consider two examples: an arrowhead, with all
straight segments, and a curved triangle, with two bends and one
straight segment.

In step 2, the orientations and propulsion strengths are
sequenced segment-wise. Straight segments are formed by plac-
ing two sets of motors, or subsegments, facing in opposite direc-
tions such that they pull away from each other as shown in Fig. 4.
We use equal numbers of motors and equal propulsion forces
in both subsegments. If the segment size has an odd number
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Fig. 4. Design procedure. (A) Shown is the general design procedure of identifying and tuning the design parameters given the target shape. Right and Left
follow the design for the two target shapes. This strategy generates a segmentation of the loop for the given target shape. (B) Illustration of the heuristics
for retuning of the parameters, which is performed segment-wise. Bottom two rows show simulation snapshots of two loops with different internal pressure
(SI Appendix, Fig. S4). Internal pressure is induced by adding soft particles inside the loop (see Materials and Methods for details). The numbers and internal
arrows, if shown for the motors, are their propulsion strengths (in units of f0) and orientations, respectively. (C) Parameter tuning for the letter “M” (shown
in Fig. 3).

of robots, we use a passive motor in the middle (see example
in Fig. 4B).

To achieve curved segments, the two subsegments are placed
facing in opposite directions. With one of the subsegments
longer than the other, the segment can curve. Then, by linearly
increasing the magnitude of the propulsion force along the sub-
segment, its optimal stability is achieved when curved (discussed
in Folding Mechanism). By having a larger propulsion force on
the longer subsegment as compared to the shorter one, the
curved segment is propelled forward in the direction of the net
force (Fig. 4A).

In step 3, we verified that the target shape folds into the
desired shape and is mechanically stable under stochastic forces.
For several shapes, thermal forces are apparently required for
folding (shown in Fig. 3, discussed in Folding Mechanism). Fig. 4
shows the simulation results of two designed loops in step 3.

In step 4, in the event that the target shape does not form, or is
unstable, retune the design parameters as described in the next
section and return to Step 3.

Tuning Design Parameters
We found that the following heuristics help to navigate the
enormous design space (illustrated in Fig. 4B). The first five
heuristics operate segment-wise. These change the force interac-
tions between the segments, which may vary the folding dynamics
and hence the stable, steady-state configurations. When tuning
these design parameters for a loop configuration, the analytical
solution, developed using rigid body dynamics and given as θ̇=
f (θ), where vector θ describes motor orientations, can be used
to estimate the changes in the loop’s folding pathway and to cal-
culate the target shape’s mechanical stability. Understanding of
the loop folding mechanism provides further intuition for tuning
design parameters. In SI Appendix, Fig. S5, we show variations of
the arrowhead shape achieved along different dimensions of the
design space.

Redistribution of Motors on a Segment. The relative number of
motors in the subsegments can be varied while maintaining the
net propulsion force of each subsegment. For a subsegment, all
motors have identical propulsion directions and may have either
identical or linearly increasing magnitude.

Scaling Propulsion Strengths in a Segment. The propulsion
strength of each motor in a segment is scaled by a constant factor.

Introducing Net Propulsion toward the Longer Subsegment. Given
that one subsegment is longer than the other one and possesses
linearly increasing propulsion strength, it can possess propulsion
larger than the other subsegment. This can be achieved by scaling
up or down the propulsion forces on the longer or the shorter
subsegment, respectively.

Tuning Motor Sizes at Corners. The widths of the motors deter-
mine the minimum fold angle. The steric interactions governing
the folding dynamics arise from the motors at the shape’s corner,
that is, the motors at the ends of each segment. Therefore, the
sizes of only these motors need to be tuned. In simulations, we
vary the diameter of the central particle in a motor, and, in exper-
iments, we shape the ends of the kilobot’s stick (see Materials and
Methods and SI Appendix, Fig. S1).

Varying Loop Size. While all previous heuristics can be applied
independently to a segment, every segment is scaled alike to vary
the loop size. Given the scale factor of the loop size, each seg-
ment is scaled by maintaining the relative ratio of the number of
motors in the subsegments. If required, a passive motor between
subsegments can be used to maintain this ratio. If that is not
possible, the motors can be redistributed using the first heuristic.

Applying Internal Pressure. Encapsulating soft particles within the
loop provides internal pressure, which additionally stabilizes
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different morphological features in the same loop. Fig. 4B (rows
6 and 7) demonstrates this for two types of loop sequences.
Without any internal pressure, the two loops fold into similar
arrowhead shapes, although with different net motion. A slight
increase in internal pressure leads to bulkier arrowheads, with
a noticeable difference between the two. Further increases in
pressure produce polygons, and, eventually, circles. At the col-
loidal scale, internal pressure can be created in multiple ways,
such as stimuli-responsive particles within the interior of the
loops that swell in response to external stimuli such as light,
pH, or moisture (32); increasing electrostatic repulsion between
the motors along the loop; or activating an equal propulsion
force on each motor along the local normal direction. The
last mechanism can also be implemented for the macroscale
loops, although we did not perform such experiments with
kilobots.

Stochastic Force. Stochastic forces drive the loops to explore
more of configuration space than is possible with only deter-
ministic forces. The propulsion forces maintaining the loop in
its steady-state shape restrain this exploration. The higher the
temperature relative to the propulsion strength, the larger the
amount of configuration space explored, which can assist in fold-
ing the target shape, switching between different shapes, and
destabilizing the shape (discussed in Folding Mechanism).

Composites. Complex shapes, such as the letter “M,” demand
many segments and more time to fold, and may possess multi-
ple mechanically stable configurations resulting in a nonunique
steady state. Some complex behaviors, such as the gripper and
pacman examples, may not be feasible using a single loop. Also,
complex single loops are generally less stable, as we will see
in Quantifying Stability of the Folded State. Hence, issues of
infeasibility, degeneracy, slow relaxation, and low stability can
potentially be avoided by using composites, where multiple loops
are fused together, each sharing some part of their loop with
the other (Fig. 3). Compositing adds topological constraints that
modularize parts of the loop, and hence, for shapes with many
features, compositing may yield more reliable folding. The pro-
cedure to design composite loops is illustrated in Fig. 3 using the
example of the letter “M.” First, the “M” is decomposed into sim-
pler shapes. The number of these shapes depends on the desired
resolution of the target, which is three for this example. The
loops for these shapes are identified using the design procedure.
Here, we need two rod-like loop shapes and an arrowhead loop
shape. Finally, the loops are fused, and the design parameters
are retuned to achieve the target.

Fig. 4C shows the tuning of parameters for the letter “M.”
Starting from the composite of the sequences of two rod-shaped
loops and an arrowhead loop, each motor was assigned a con-
stant propulsion speed of 40 f0. We observed that, with this
value, the rod-shaped loops form fast but spread wide. We then
decreased the propulsion strengths on the rods to 3 f0. We also
increased the size of certain specific motors (as shown), which
helped form the arrowhead (V-shaped) loop in the center of
the letter. Further fine-tuning of specific motor sizes and propul-
sion strengths achieved the target letter shape. For the pacman
(Fig. 3D), the lobes were filled with passive bots to provide inter-
nal pressure, sustaining the rounded morphology and increasing
stability in the closed state. Harmonic springs were used to pro-
duce the open state. See SI Appendix, Fig. S3 for the complete
design parameters of the three composites, and see Movies S5
and S6 for the movies.

Loop Motion. The motion of the folded shapes results from the
loop sequence of the motors and thus the net propulsion force on
the loop, which can be calculated a posteriori in simulations or
a priori using the analytical solution. Naturally, any net motion

will be along the asymmetric axis (Fig. 3). There are (at least)
three ways in which a loop can be moved (shown in Fig. 5). The
first way is by tuning the design parameters. For instance, enlarg-
ing motors of the arrowhead loop in Fig. 3A reverses the motion
(Fig. 5, Left). The second way is by assigning to each motor
an additional propulsion force biased in the desired direction
(Fig. 5, Center). A third way is to attach an external navigator to
the loop, such as a magnetic navigator controlled via an external
magnetic field (Fig. 5, Right).

Reconfiguring between Different Folded States
Reconfiguration between folded shapes proceeds by switching
between the respective design parameters of each shape. In some
cases, switching the parameters of one folded shape can directly
reconfigure it into the second folded shape. We refer to these
as direct reconfigurations (SI Appendix, Fig. S6). In general,
however, loop folding depends on the starting configuration,
and thus direct reconfiguring from one arbitrary configuration
to another may not be possible or may lead to a mechanically
trapped state.

Loop Motion

Tuning 
design 

parameters

Adding 
bias 

propulsion

Connecting 
an external 
navigator

Increase 
internal 
pressure

Release 
internal 

pressure

Starting shape

Final shape

Switch 
sequence

Fig. 5. Loop motion and reconfiguration. Top shows the simulation snap-
shots of examples describing three methods (Left, Center, and Right) for
directing the motion of the folded states (Movie S7). (Bottom) In general
reconfiguration, reconfiguration between arbitrary folded states can be
accomplished by the procedure illustrated using an example (Movie S8).
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Fig. 5 shows one method to achieve this general reconfigu-
ration, through an example. Starting from an arbitrary folded
shape, the internal pressure is increased to inflate the loop into
the highest symmetry shape possible. Then the design parame-
ters are switched. For the example in Fig. 5, only the sequence of
motor orientations is switched. The internal pressure maintains
the inflated morphology. Subsequently, the internal pressure
is reduced, resulting in the new target shape. At the colloidal
scale, such pressure variation can be actualized by using stimuli-
responsive polymers that shrink in response to, for instance,
solvent pH or salt concentration (5, 33). Alternatively, inflation
of the loop may be achieved by increasing electrostatic repulsion
between motors or introducing elasticity between motors.

Folding Mechanism
The three major shape features—straight segments, curved seg-
ments, and zigzags—and their arrangement in a loop to achieve
a desired shape are achieved via three respective driving forces
shown in Fig. 6A. These driving forces, in turn, are governed
by the loop’s design, as described below using the arrowhead
example.

Straightening Force. Connected subsegments of motors acting in
opposite directions stretch to form a straight geometry that is sta-
ble to mechanical perturbations. This opposing force is typically
the strongest, and, therefore, folding starts by straightening of
all of the segments. The size ratio of the two subsegments does
not affect the straightening, although it will affect the notching
force. The propulsion force magnitudes along a subsegment are
either identical or monotonically increasing in the direction of
the force. Both choices achieve straight segments within a shape,
but each choice has implications for the other two folding forces.
We find that a random distribution of force magnitudes over a
subsegment leads to unstable folding behavior.

Curving Force. This is the net force produced along a segment
when the net propulsion force of its subsegments do not cancel
each other out, instead creating a curve. The degree of curvature
increases with this net force (shown in SI Appendix, Fig. S7A for
an example). For curved subsegments, we use linearly increas-
ing magnitudes of the propulsion forces. Under high curvature,
subsegments with identical magnitudes of propulsion forces on
the motors are unstable to mechanical perturbations. In gen-
eral, stabilizing higher curvatures requires higher gradients of
variation in the magnitude of propulsion forces along a seg-
ment (see SI Appendix, Fig. S7B for results exploring different
gradients).

Notching Force. When neighboring segments attempt to fold
beyond what is permissible by steric hindrance, they bend at a
corner as shown in Fig. 6A (third image). This bending generates
a net force on the pair of corner segments, which we refer to as
the notching force. In Fig. 6, we show how this driving force folds
the arrowhead shape.

The loop in Fig. 6B is folded at T =0. The figure plots torques
generated at angles II, III and IV as the folding proceeds in
time. Negative torque acts to reduce the angle. Folding starts
by straightening the segments. Complete straightening of the
segments I and II and I to IV is prevented by the larger steric
hindrance between the motors at corner I. This generates a net
notching force on segments I and II and I to IV, pulling them
downward. This motion, in turn, reduces angles II and IV. When
these angles decrease below π/3, steric hindrance prevents fur-
ther folding at these angles as indicated by τ =0 for t ≤ 6 t0
(Fig. 6B). Consequently, neighboring segments bend at corners
II and IV, generating net torques on segment pairs I and II and
II and III, and I to IV and III to IV (see the third snapshot in
Fig. 6B). These net torques are such that they further enforce the

folding at angle III until blocked by steric hindrance for t ≤ 15 t0.
We measure the net torques on pairs of segments with different
lengths in Fig. 6C by folding such pairs in simulations, connecting
the ends via a harmonic bond (see Materials and Methods). The
plot shows that such a pair always rotates from the longer to the
shorter segment with a net torque proportional to their length
ratio. This property explains the formation and stabilization of
the arrowhead.

Although the folded state of this arrowhead is stable under
stochastic (thermal) forces, it does not require the stochastic
forces for folding. In Fig. 6D, we fold a similar loop that does
not use larger motors as used above, but instead requires ther-
mal noise. Fig. 6D plots torques on the shown angles of this loop
similar to Fig. 6B. Starting from the circular configuration, all
segments of this loop straighten (see first snapshot in Fig. 6D).
No unbalanced forces are yet present in this configuration. Ther-
mal forces cause the loop to fluctuate in configuration space
around an average shape. Since the shape stiffness is at its mini-
mum at the corners, the fluctuations are at their maximum there.
The plot in Fig. 6D shows that angles II, III, and IV fluctuate
randomly until 50 t0, when the system finds the configuration
containing the notching force. These torques, shown in the sec-
ond snapshot in Fig. 6D, fold angle III inward, as indicated by
negative τangle for 50 t0< t < 100 t0. Beyond 100 t0, the arrow-
head is stabilized, and any residual torques are due to thermal
fluctuations. Thus, the role of thermal forces in this example
is to explore configuration space, which is useful for folding
complex shapes.

Since thermal forces control the exploration of shapes around
the optimum shape in configuration space, loops at different
temperatures may fold into different shapes. This behavior is
shown in Fig. 6E (Bottom) for a loop with eight segments, each
containing n particles. To gain insight into this behavior, we
folded a pair of segments as in Fig. 6C and measured the net
force, fnet, on the pair and tension, ftension, on the bond, with
length x , between end points (Fig. 6F). This pair corresponds
to pairs of segments in Fig. 6E (Bottom). Higher temperature
causes increased bending of the segments, corresponding to
lower x . The two regions with T =0.001 and 0.01 in Fig. 6E
(Bottom) correspond to x & 1 and x < 1, respectively. Fig. 6F
shows that ftension moves from positive to negative values as x
moves from > 1 to < 1. Thus, the loop fluctuating under larger
thermal forces forms pairs of segments under negative tension,
whereas loops under smaller thermal forces fold differently.
When x ≈ 1, fnet is at its maximum. At T =0.001, x ≈ 1 for
only one pair of arms, and that drives the net motion of the
shape. At T =0.01, every pair of arms pushes toward the cen-
ter of the shape, canceling out the net motion and increasing
the shape’s stability. Large thermal forces result in unstable fold-
ing behavior and do not produce a unique steady-state shape
(shown in Fig. 6E). Fig. 6F shows that ftension rapidly decreases
in magnitude as n increases from 2 to 4, which corresponds to
Fig. 6E (second column). This is because the tension on the pair
at n =4 is not sufficient to stabilize a similar shape formed at
n =2. Also, ftension saturates for n > 4 as it does for the shape in
Fig. 6E, corroborating the influence of the notching force on the
folded state.

Quantifying Stability of the Folded State
For nonzero thermal force, different shapes exhibit different
shape fluctuations in steady state. To estimate these fluctuations,
we apply linear stability analysis (34) on the rotational degrees of
freedom of the loop. The analytical solution θ̇= f (θ) is approx-
imated in the linear limit to obtain δθ̇=F δθ, where vector θ
contains particle orientation and F is the Jacobian matrix cal-
culated for the steady state (at T =0) loop shape (see Theory).
Fig. 7A plots the eigenvalues of F for different shapes. For
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Fig. 6. Folding mechanism. (A) The three driving forces that drive the folding are indicated via arrows over one of the segments for each shape. (B) Plot of
torque on the angles II, III, and IV (indicated via dotted lines) for the shown loop’s simulation. The representative loop configurations at separate times are
shown with their notching force (blue arrows). Negative torque decreases the angle. The shown loop is simulated at T = 0 with propulsion strengths 10 f0

for all motors. The two larger motors are of size 0.6 σ. The torque is calculated as γ ∆θ̇, where ∆θ̇ is the difference between rotational velocities of the
two corresponding motors. Rotational velocities are calculated using the analytical solution θ̇ = f(θ), where θ is obtained from the simulation. (C) Shown
schematic is a pair of segments with ends tied by a harmonic bond of coefficient 0.01 k0. Net torque, τnet (γr times the net rotation measured in simulations),
is plotted with respect to one of the segment sizes, n. Each simulation is initialized with straight segments at angle π/3 and folded at T = 0 by tightening
the harmonic bond until separated by distance 1.4σ. Motors possess unit propulsion strength. (D) Similar to B, but the loop is simulated at T = 0.1 and all
motors are of size σ/2. (E) Phase diagram of an example with respect to T and n, the number of particles in each segment. Top and Bottom rows are for
n = 4 and n = 2, respectively. The propulsion strength of all motors is 4 f0. (F) Shown schematic is a pair of segments with ends tied by a harmonic bond of
equilibrium length x and coefficient 0.01 k0. Tension. ftension, on this bond and net force, fnet , on the pair are plotted against x (fixing n = 2) and n (fixing
x = 0.25 σ). Forces are measured in simulations. Motors possess unit propulsion strength.

comparison purposes, the average magnitude of the propulsion
force on motors within a shape is fixed. All of the eigenvalues
are nonpositive, which indicates that the folding modes are either
stable or neutral. Only the first shape has a neutral/floppy mode

corresponding to the eigenvalue zero. Moving left to right, the
number of modes with higher eigenvalues increases, suggest-
ing reduced stability, which is also evident by the increase in
fluctuations observed in simulations and plotted in Fig. 7B.
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Discussion
Summary. We described a design strategy to build robotic
machines by using constantly propelled particles, referred to
as motors. By design, these motors lack onboard computa-
tion, individual identity, and memory, hence mimicking active
colloids—the intended raw material for our machines. Our strat-
egy is to hinge these motors end-to-end in a closed loop. Hinging
techniques for colloidal particles largely use polymers2007 and
DNA (25–27). Communication between motors is only via steric
interaction and hinge constraint, due to which the system is
material and environment agnostic. The loop folds into a pre-
scribed shape and motion as encoded via six design parameters,
including the sequences of motor orientations and propulsion
strengths, motor size, magnitude of the stochastic forces, loop
size, and internal loop pressure. These design parameters are
to be regulated via external stimuli (Fig. 1B) to build desired
robotic machines. We investigated the design space in experi-
ments using centimeter-scale kilobots (35) to demonstrate the
simplest designs requiring the fewest robots, and in colloidal-
scale Brownian dynamics simulations to validate scale invariance
and explore complex loop designs. By fusing multiple loops,
complex shapes such as the (letter “M”) and complex dynamic
behavior as demonstrated in the (gripper and pacman) loops
can be achieved. We described how to reverse-engineer the
loop design for a given shape and provided ways to control
its motion and reconfiguration. Using simulations and analyti-
cal theory—developed using rigid body dynamics—we described
the folding mechanism and quantified the stability of loop
configurations.

E
ig

en
va

lu
e 

(f
0)

B

A

Fig. 7. Stability analysis. (A) Eigenvalues corresponding to the fold-
ing modes of different loop configurations are plotted. Only the first
configuration—square—possesses a floppy mode. Calculated are the eigen-
values of F from the analytical solution δθ̇ = Fδθ. The mean propulsion force
of each loop is set to unity for comparison purposes. Only those eigenvalues
are plotted whose eigenvectors have more than 98% projection into the
kinematic space (see Materials and Methods for details). The values inside
the brackets along the x axis are the number of folding modes and number
of floppy modes. The dotted line marks the eigenvalue zero. θ corresponds
to the equilibrium state. (B) Heatmap of average fluctuation, 〈∆r2〉, of the
steady states of loops at different T . 〈∆r2〉 is the difference of the distance
of a motor from the shape’s center-of-mass calculated between the thermal
steady state and the equilibrium state, and averaged over all motors and
1,000 simulation frames. The mean propulsion of each simulated loop is set
to 6 f0. Equilibrium state is achieved by folding the shape at T = 0.05 and
then cooling down to T = 0. Representative simulation snapshots at lower
and higher T are shown. See SI Appendix, Fig. S8 for the complete sequence
of propulsion forces.

Applications. Our loops can conceivably be refined in the future
for noninvasive medical surgery where the shape of the loops
can be manipulated via external fields. Since these loops are
malleable, they should easily squish through delicate tissues and
activate on demand using ultrasound or lasers to perform tar-
geted diagnostics and drug delivery. Materials researchers can
employ ensembles of loops to self-organize novel structures or
manipulate micron-sized machine parts for bottom-up fabrica-
tion. Smart textiles can be fabricated as a metamaterial com-
prising a network of loop composites. SI Appendix, Fig. S9 illus-
trates several envisioned, far-future applications of our system as
autonomous and user-controlled reconfigurable machines.

Future Directions. Future studies might explore numerous other
variations of our design scheme. Examples include removing
the constraint that all propulsion forces on robots be tangen-
tial to the loop, or tethering loops rather than having them
be freely floating. The current study is limited to same-length
motors. It will be interesting to vary motor lengths to tune
the force coupling. Maintaining symmetry using different-length
motors for the symmetrical segments of the shape will be cru-
cial to the shape’s stability. The experimental, simulation, and
analytical models we provided can be easily extended for such
generalized cases. Theory and simulations can find ways to
improve the robustness and stability of complex loops. Break-
ing the planar positioning of motors is another prospect that
will generate 3D loop structures. Experiments can focus on how
to synthesize composites to enable complex designs and how
to efficiently regulate the design space via external stimuli in
order to program multiple configuration states into a single sys-
tem. Another interesting anticipated experimental idea would be
the synthesis of hybrid systems comprising electronics as well
as nanoparticles into loops. Other interesting areas to investi-
gate include the effects of particle–particle interactions such as
attraction, repulsion, dipolar interactions, and hydrodynamics on
the system.

Materials and Methods
Experiment. For experimental demonstration of our design, we use kilobots
(35), bought from RoadNarrow Robotics along with a charging unit and an
overhead controller. Each kilobot is 33 mm in diameter and moves using left
and right motors. Each kilobot is attached at the center of a 66-mm popsicle
stick. The kilobots face along the length of their popsicle sticks so that any
motion of a kilobot will be always tangential to the loop at that kilobot’s
location. The left and right motors rotate a kilobot toward left and right,
respectively, with a turn radius. This effect is exploited to propel the bots
forward by alternatively actuating left and right motors (see SI Appendix
for the microcontroller code programmed into the kilobots). The motors
are manually calibrated to match the left and right rotational speeds to
π/5 s−1. To introduce stochasticity, the duration of the motor actuation is
randomly chosen within 200 ms. Although this stochasticity is low relative
to the propulsion force, it helps control the propulsion bias of the kilobots
arising due to their imprecise nature. The ends of the popsicle sticks are
drilled with tiny holes with cut corners (SI Appendix, Fig. S1). A pair of bots
are connected to each other by inserting a bent pin in the corresponding
holes, which allows for the folding degree of freedom. The minimum fold
angle is determined by the angle of the cuts at the corners (SI Appendix,
Fig. S1). Large variation in the propulsion force is difficult for kilobots; there-
fore, all motors are calibrated to exert the same force. In cases where a bot
with zero propulsion is required in a loop, a popsicle stick of equal length
is used in its place. Importantly, we did not use the intercommunication
feature of the kilobots. Thus, the kilobots do not interact with each other
other than through the mechanical forces conveyed by the popsicle sticks,
and by steric constraints. All experiments were performed on a single flat
surface, on which motors were calibrated and start from a circular initial
configuration. Slight deviations of some shapes observed in experiments as
compared to simulations are possibly due to imprecise motor calibration and
approximation of the sequence.

Simulation. Each motor in a loop is modeled as a disk of diameter σ/2
with two diametrically opposite hinge ends at σ/2 distance from the
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center of the disk. Volume exclusion between adjacent motors determines
the minimum angle of the fold possible between them, which, in our case,
is π/3. The loops are simulated in two dimensions with periodic bound-
ary conditions using the simulation toolkit HOOMD-blue (v2.2.1) (36–40).
The dynamics of motor i is simulated using the Brownian equation of
motion (41).

ṙi =
1

γ

(
F i + fa

i êi
)
+

√
2

kT

γ
η(t) [1]

θ̇i = τi/γr , [2]

where ri and θi are the position and orientation, respectively, of motor i. F i

and τi are the net force and torque on i due to volume exclusion inter-
actions and harmonic bonds. Volume exclusion is applied between disks
of motors. To prevent self-intersection of a loop, volume exclusion simi-
lar to that of disks is applied between the hinges. Other than preventing
the unphysical self-intersection, this force does not influence the fold-
ing dynamics. Volume exclusion interactions between centers at r distance
apart are modeled via the Weeks–Chandler–Andersen potential, UWCA(r) =

4ε
[

(σ′/r)12− (σ′/r)6
)]

+ ε, for r<σ/2, and UWCA(r) = 0 otherwise (42),

where σ′ =σ/
(

2× 21/6
)

and ε determines the strength of the potential.

We set ε= 10−4k0 σ for our system. A hinge is modeled via harmonic bond
between adjacent motors with strength k0 and equilibrium length set to
zero. The propulsion force, fa

i , acts along êi , which is a unit vector along
the axial direction of the motor i. Hence, each fa

i acts tangentially to the
loop and will point along either the clockwise or anticlockwise direction
relative to the loop. The forces and torques are nondimensionalized using
f0 = 10−3k0 σ and τ0 = 10−3k0 σ

2, respectively. Nondimensional thermal
energy T = kT/10−3k0 σ

2 and is set to 0.1 unless specified otherwise, and
η(t) is unit-variance Gaussian white noise. Hinge strength is used for the
nondimensionalization of forces, rather than the thermal energy, which is
conventionally used for the active particle systems to quantify the propul-
sion sequences of the loops that fold in the nonthermal regime and compare
them consistently with those that fold in the thermal regime. γr is the rota-
tional drag coefficient and is set equal to the translational drag coefficient,
γ. The rotational noise in a motor orientation arises from the translational
diffusion of the adjacent motors bonded to it. Time is measured in units
of t0 = γ/(10−3k0). All of the simulations are initialized from the circular
configuration unless otherwise stated and equilibrated for at least 500 t0

before measuring any quantity. Precision of folding is validated via 20
replicas each.

Theory. We use rigid body dynamics to develop the analytical solution for
the loops (43). Each motor is treated as a rigid body. The joint between
neighboring motors possesses rotational degree of freedom. The objective
is to calculate the angular velocity vector as a function of orientation vec-
tor, θ̇ = f(θ), where θ̇ and θ contain angular velocities and orientations,
respectively, of the motors in the loop. Each rigid body in two dimen-
sions possesses two translational and one rotational degree of freedom.
The force balance for the loop along each degree of freedom can be
written as

Af J
x +

M∑
m

fex
m km

x + fa
x = Γvx [3]

Af J
y +

M∑
m

fex
m km

y + fa
y = Γvy [4]

S
(

f J
x + f J

x1
)
− C

(
f J

y + f J
y1
)

= Γr θ̇, [5]

where each row corresponds to the force balance on a motor in a loop. The
f J

x and f J
y are joint forces in x and y directions. Scalar variables f J

x and f J
y are

added to their corresponding vectors to ensure kinematic constraints. The vx

and vy are translational velocity vectors. The fa
x and fa

y are propulsion forces
in x and y axes. The magnitude of volume exclusion forces between the
mth pair of overlapping motors is fex

m . The km
x and km

y contain contributions
per unit of fex

m in x and y directions on each motor, where this contribution
is nonzero only for the motors in the mth pair and is a function of their
orientations. M is the total number of overlapping pairs. The matrices A, S,
C, Γ, and Γr are square matrices of size N, which is the number of motors in
the loop.

A =



1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
...

...
...

. . . 0 0
0 0 0 · · · −1 0
0 0 0 · · · 1 −1
−1 0 0 · · · 0 1


,

S =



sin θ0 sin θ0 0 · · · 0 0
0 sin θ1 sin θ1 · · · 0 0
...

...
...

. . . 0 0
0 0 0 · · · sin θN−3 0
0 0 0 · · · sin θN−2 sin θN−2

sin θN−1 0 0 · · · 0 sin θN−1


.

C is equivalent to S but with cosine of θs. Γ is the diagonal matrix con-
taining drag coefficients, γs, of the corresponding motors. The kinematic
constraints ensuring loop connectivity during motion are given by

Bvx = Hxθ̇ [6]

Bvy = Hy θ̇, [7]

where

B =



1 0 0 · · · 0 −1
−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

...
...

. . . 0 0
0 0 0 · · · 1 0
0 0 0 · · · −1 1


,

Hx =−
σ

2



sin θ0 0 0 · · · 0 sin θN−1

sin θ0 sin θ1 0 · · · 0 0
0 sin θ1 sin θ2 · · · 0 0
...

...
...

. . . 0 0
0 0 0 · · · sin θN−2 0
0 0 0 · · · sin θN−2 sin θN−1


.

Hy is equivalent to Hx but with cosines of θs and the prefactor of +σ/2.
Substituting vector variables vx and vy from Eqs. 6 and 7 into Eqs. 3 and 4
and subsequently substituting f J

x and f J
y into Eq. 5 yields

Z θ̇ =
M∑
m

fex
m am + f J

xb− f J
yc + d, [8]

where am = CA†km
y − SA†km

x , b = S1, c = C1, d =−SA†fa
x + CA†fa

y , and Z =

Γr − SA†ΓB†Hx + CA†ΓB†Hy . Superscript † represents the pseudoinverse. In
the rigid body formulation, there is no explicit volume exclusion poten-
tial. Wherever a pair of motors overlap, their centers are connected by a
rigid rod and the motors are assumed to be pinned to each other, and
rotated with the same velocity. Generally, the placement of this rigid rod
is shape-dependent. To incorporate this, we substitute θ = Dθ′, where θ′

contains N−M nonredundant orientations and D is a N×NM matrix that
duplicates the required entries of θ′. Consequently, the singular value
decomposition (SVD) of ZD will have a null space of size M. Ref. 44
explains the usage of SVD for evaluating kinematic and dynamic informa-
tion of a network system. Let βms be left-singular vectors corresponding
to this null space. In order to satisfy Eq. 8, the projection of the right-
hand side on each of βm must be zero, which gives us M additional
constraints,

β
T
m

(
M∑
m

fex
m am + f J

xb− f J
yc + d

)
= 0, where m = 0 to M− 1. [9]

Similarly, to satisfy kinematic constraints (Eqs. 6 and 7), Hxθ̇ and Hy θ̇ must
have zero projection on the left-singular vector corresponding to the null
space of B, which is 1 generating two additional constraints,

1T Hxθ̇ = 0 [10]

1T Hy θ̇ = 0. [11]

Finally, θ̇ is calculated using Eqs. 8–11.
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To measure stability of a loop shape around its steady-state value, we
use linear stability analysis (34), where Eqs. 3–7 are approximated in the
linear limit. Overlapping particles are assumed to fluctuate together in the
linear limit. By applying similar derivation as above, δθ̇′ = Fδθ′ is evalu-
ated, where F is the Jacobian matrix and δθ′ contains N−M nonredundant
entries. To remove any global rotation, we fix the first motor to be station-

ary by substituting θ′ =

[
0N-1

T

IN−1

]
θ
′′

, where θ
′′

contains orientations 1 to

N−M− 1, resulting in δ ˙θ′′ = F′δθ
′′

. The eigenvalue decomposition of F′

yields stable, unstable, and neutral (floppy) folding modes corresponding
to negative, positive, and zero eigenvalues. However, the motion defined
by an eigenvector of F′ may be geometrically forbidden. Therefore, to iden-
tify feasible eigenvectors, we calculate the kinematic space of a loop, which
is of rank N−M− 2 (which includes the global rotation mode). The kine-

matic matrix is given by Vkinematic = VN , where column vectors are the basis

vectors. V contains the right-singular vectors of
[

B 0N

0N B

][
HxD
HyD

]
excluding

its null space, andN is the null space of SVD of
[

1N
T 0N

T

0N
T 1N

T

][
HxD
HyD

]
V .

All data as well as simulation, analysis, and visualization scripts are pub-
licly available at https://doi.org/10.7302/czgw-2x26. The software used
to perform the simulations is publicly available at https://github.com/
glotzerlab/hoomd-blue.
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12. D. Walker, B. T. Käsdorf, H. H. Jeong, O. Lieleg, P. Fischer, Enzymatically active

biomimetic micropropellers for the penetration of mucin gels. Sci. Adv. 1, e1500501
(2015).

13. J. Palacci, S. Sacanna, A. P. Steinberg, D. J. Pine, P. M. Chaikin, Living crystals of light-
activated colloidal surfers. Science (New York, N.Y.) 339, 936–940 (2013).

14. B. L. Feringa, The art of building small: From molecular switches to motors (Nobel
Lecture). Angew. Chem. Int. Ed. 56, 11060–11078 (2017).

15. B. Yurke, A. J. Turberfield, A. P. Mills, F. C. Simmel, J. L. Neumann, A DNA-fuelled
molecular machine made of DNA. Nature 406, 605–608 (2000).

16. T. Yu et al., Chemical micromotors self-assemble and self-propel by spontaneous
symmetry breaking. Chem. Commun. 54, 11933–11936 (2018).

17. M. Agrawal, I. R. Bruss, S. C. Glotzer, Tunable emergent structures and traveling
waves in mixtures of passive and contact-triggered-active particles. Soft Matter 13,
6332–6339 (2017).

18. M. Rubenstein, A. Cornejo, R. Nagpal, Robotics. Programmable self-assembly in a
thousand-robot swarm. Science (New York, N.Y.) 345, 795–799 (2014).

19. M. F. Hagan, A. Baskaran, (2016) Emergent self-organization in active materi-
als.arXiv:1602.0388 (10 February 2016).

20. J. W. Boley et al., Shape-shifting structured lattices via multimaterial 4D printing.
Proc. Natl. Acad. Sci. U.S.A. 116, 20856–20862 (2019).

21. S. Li et al., Particle robotics based on statistical mechanics of loosely coupled
components. Nature 567, 361–365 (2019).

22. I. Slavkov et al., Morphogenesis in robot swarms. Sci. Robo. 3, eaau9178 (2018).
23. L. Giomi, N. Hawley-Weld, L. Mahadevan, Swarming, swirling and stasis in

sequestered bristle-bots. Proc. Math. Phys. Eng. Sci. 469, 20120637 (2013).
24. G. A. Devries et al., Divalent metal nanoparticles. Science (New York, N.Y.) 315, 358–

361 (2007).

25. D. Nykypanchuk, M. M. Maye, D. van der Lelie, O. Gang, DNA-guided crystallization
of colloidal nanoparticles. Nature 451, 549–552 (2008).

26. C. Zhang et al., A general approach to DNA-programmable atom equivalents. Nat.
Mater. 12, 741–746 (2013).

27. W. B. Rogers, W. M. Shih, V. N. Manoharan, Using DNA to program the self-
assembly of colloidal nanoparticles and microparticles. Nat. Rev. Mat. 1, 16008
(2016).

28. A. Kaiser, S. Babel, B. Ten Hagen, C. Von Ferber, H. Löwen, How does a flexible chain
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